Physiological state, growth mode, and oxidative stress play a role in Cd(II)-mediated inhibition of Nitrosomonas europaea 19718.
نویسندگان
چکیده
The goal of this study was to determine the impact of physiological growth states (batch exponential and batch stationary growth) and growth modes (substrate-limited chemostat, substrate-sufficient exponential batch, and substrate-depleted stationary batch growth) on several measures of growth and responses to Cd(II)-mediated inhibition of Nitrosomonas europaea strain 19718. The specific oxygen uptake rate (sOUR) was the most sensitive indicator of inhibition among the different responses analyzed, including total cell abundance, membrane integrity, intracellular 16S rRNA/DNA ratio, and amoA expression. This observation remained true irrespective of the physiological state, the growth mode, or the mode of Cd(II) exposure. Based on the sOUR, a strong time-dependent exacerbation of inhibition (in terms of an inhibition coefficient [K(i)]) in exponential batch cultures was observed. Long-term inhibition levels (based on K(i) estimates) in metabolically active chemostat and exponential batch cultures were also especially severe and comparable. In contrast, the inhibition level in stationary-phase cultures was 10-fold lower and invariable with exposure time. Different strategies for surviving substrate limitation (a 10-fold increase in amoA expression) and starvation (the retention of 16S rRNA levels) in N. europaea cultures were observed. amoA expression was most negatively impacted by Cd(II) exposure in the chemostat cultures, was less impacted in exponential batch cultures, and was least impacted in stationary batch cultures. Although the amoA response was consistent with that of the sOUR, the amoA response was not as strong. The intracellular 16S rRNA/DNA ratio, as determined by fluorescence in situ hybridization, also did not uniformly correlate with the sOUR under conditions of inhibition or no inhibition. Finally, Cd(II)-mediated inhibition of N. europaea was attributed partially to oxidative stress.
منابع مشابه
Expression of merA, trxA, amoA, and hao in continuously cultured Nitrosomonas europaea cells exposed to cadmium sulfate additions.
The effects of CdSO(4) additions on the gene expressions of a mercury reductase, merA, an oxidative stress protein, trxA, the ammonia-monooxygenase enzyme (AMO), amoA, and the hydroxylamine oxidoreductase enzyme (HAO), hao, were examined in continuously cultured N. europaea cells. The reactor was fed 50 mM NH(4)+ and was operated for 78 days with a 6.9 days hydraulic retention time. Over this p...
متن کاملElemental Profiling of Single Bacterial Cells As a Function of Copper Exposure and Growth Phase
The elemental composition of single cells of Nitrosomonas europaea 19718 was studied via synchrotron X-ray fluorescence microscopy (XFM) as a function of inhibition by divalent copper (Cu(II)) and batch growth phase. Based on XFM, the intracellular Cu concentrations in exponential phase cultures of N. europaea exposed to Cu(II) were statistically higher than in stationary phase cultures at the ...
متن کاملNitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway.
Nitrous oxide (N(2)O) emission from soils is a major contributor to the atmospheric loading of this potent greenhouse gas. It is thought that autotrophic ammonia oxidizing bacteria (AOB) are a significant source of soil-derived N(2)O and a denitrification pathway (i.e. reduction of NO(2) (-) to NO and N(2)O), so-called nitrifier denitrification, has been demonstrated as a N(2)O production mecha...
متن کاملComplete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea.
Nitrosomonas europaea (ATCC 19718) is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The GC skew analysis indicates that the genome is...
متن کاملOxidative Stress and its Role in Female Infertility and Assisted Reproduction: Clinical Implications
Reactive oxygen species (ROS) are involved in physiological functions and act as mediators in various signaling processes. Elevated or sustained generation of free radicals and non radical species derived from free radicals can lead to an imbalance in the intracellular redox homeostasis. Normally, any excess levels of reactive radical and nonradical species generated are intercepted by antioxid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 74 8 شماره
صفحات -
تاریخ انتشار 2008